Skip to main content

SOUND OBSERVED FROM SATURN MOVING TO ENCELADUS BY CASSINI

2 Sep 2017 the day when Cassini ( spacecraft launched to study saturn and its moon)  heard something from Saturn moving to its moon Enceladus, its the powerful and dynamic interaction of plasma waves.



The observations show for the first time that the waves travel on magnetic field lines connecting Saturn directly to Enceladus. The field lines are like an electrical circuit between the two bodies, with energy flowing back and forth.

Researchers converted the recording of plasma waves into a “whooshing” audio file that we can hear -- in the same way a radio translates electromagnetic waves into music. The recording time was compressed from 16 minutes to 28.5 seconds.

Much like air or water, plasma (the fourth state of matter) generates waves to carry energy. The Radio Plasma Wave Science (RPWS) instrument on board NASA’s Cassini spacecraft recorded intense plasma waves during one of its closest encounters to Saturn.


Enceladus is this little generator going around Saturn, and we know it is a continuous source of energy. Now we find that Saturn responds by launching signals in the form of plasma waves, through the circuit of magnetic field lines connecting it to Enceladus hundreds of thousands of miles away.

The interaction of Saturn and Enceladus is different from the relationship of Earth and its Moon. Enceladus is immersed in Saturn’s magnetic field and is geologically active, emitting plumes of water vapor that become ionized and fill the environment around Saturn. Our own Moon does not interact in the same way with Earth. Similar interactions take place between Saturn and its rings, as they are also very dynamic.

The recording was converted by the RPWS team at the University of Iowa, led by physicist and RPWS Principal Investigator Bill Kurth.

"Download" hissle sound

Comments

Popular posts from this blog

What is Nebula. Images of some nebula by Hubble

A nebula is a giant cloud of dust and gas in space. Some nebulae (more than one nebula) come from the gas and dust thrown out by the explosion of a dying star, such as a supernova. Other nebulae are regions where new stars are beginning to form. For this reason, some nebulae are called "star nurseries." How do stars form in a nebula? Nebulae are made of dust and gases—mostly hydrogen and helium. The dust and gases in a nebula are very spread out, but gravity can slowly begin to pull together clumps of dust and gas. As these clumps get bigger and bigger, their gravity gets stronger and stronger. Eventually, the clump of dust and gas gets so big that it collapses from its own gravity. The collapse causes the material at the center of the cloud to heat up-and this hot core is the beginning of a star. Some of the most amazing nebula pictured by Hubble in Milky Way Galaxy The Eagle Nebula’s Pillars of Creation (M 16, Messier 16) The dust and gas in the pi

STARS GOING OUT OF CONTROL

Stars Gone Haywire. As nuclear fusion engines, most stars live placid lives for hundreds of millions to billions of years. But near the end of their lives they can turn into crazy whirligigs, puffing off shells and jets of hot gas. Thanks to Hubble which give us a chance to view these beautiful stars. The Butterfly Nebula Imagine a lawn sprinkler spinning wildly, tossing out two S-shaped streams. At first it appears chaotic, but if you stare for a while, you can trace its patterns. The same S-shape is present in the Butterfly Nebula, except in this case it is not water in the air, but gas blown out at high speed by a star. The S-shape directly traces the most recent ejections from the central region, since the collisions within the nebula are particularly violent in these specific regions of NGC 6302. "This iron emission is a sensitive tracer of energetic collisions between slower winds and fast winds from the stars. It's commonly observed in supernova remnants and active gala

WHAT IS A BLACK HOLE

In April, NASA created a big announcement that they captured first image of black hole.  BUT WHAT IS A BLACK HOLE It is a great amount of matter packed into a very small area - think of a star ten times more massive than the Sun squeezed into a sphere approximately the diameter of New York City. The result is a gravitational field so strong that nothing, not even light, can escape. Most famously, black holes were predicted by Einstein's theory of general relativity, which showed that when a massive star dies, it leaves behind a small, dense remnant core. If the core's mass is more than about three times the mass of the Sun, the equations showed, the force of gravity overwhelms all other forces and produces a black hole. HOW THEY ARE FORMED Most black holes form from the remnants of a large star that dies in a supernova explosion. (Smaller stars become dense neutron stars, which are not massive enough to trap light.) If the total mass of the star is large e